Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots.

Identifieur interne : 000514 ( Main/Exploration ); précédent : 000513; suivant : 000515

RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots.

Auteurs : Jeffrey S. Larsen [États-Unis] ; Wayne R. Curtis

Source :

RBID : pubmed:22559055

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plant cell suspensions and hairy root cultures represent scalable protein expression platforms. Low protein product titers have thus far limited the application of transient protein expression in these hosts. The objective of this work was to overcome this limitation by harnessing A. tumefaciens to deliver replicating and non-replicating RNA viral vectors in plant tissue co-cultures.

RESULTS

Replicating vectors derived from Potato virus X (PVX) and Tobacco rattle virus (TRV) were modified to contain the reporter gene β-glucuronidase (GUS) with a plant intron to prevent bacterial expression. In cell suspensions, a minimal PVX vector retaining only the viral RNA polymerase gene yielded 6.6-fold more GUS than an analogous full-length PVX vector. Transient co-expression of the minimal PVX vector with P19 of Tomato bushy stunt virus or HC-Pro of Tobacco etch virus to suppress post-transcriptional gene silencing increased GUS expression by 44 and 83%, respectively. A non-replicating vector containing a leader sequence from Cowpea mosaic virus (CPMV-HT) modified for enhanced translation led to 70% higher transient GUS expression than a control treatment. In hairy roots, a TRV vector capable of systemic movement increased GUS accumulation by 150-fold relative to the analogous PVX vector. Histochemical staining for GUS in TRV-infected hairy roots revealed the capacity for achieving even higher productivity per unit biomass.

CONCLUSIONS

For the first time, replicating PVX vectors and a non-replicating CPMV-HT vector were successfully applied toward transient heterologous protein expression in cell suspensions. A replicating TRV vector achieved transient GUS expression levels in hairy roots more than an order of magnitude higher than the highest level previously reported with a viral vector delivered by A. tumefaciens.


DOI: 10.1186/1472-6750-12-21
PubMed: 22559055
PubMed Central: PMC3403893


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots.</title>
<author>
<name sortKey="Larsen, Jeffrey S" sort="Larsen, Jeffrey S" uniqKey="Larsen J" first="Jeffrey S" last="Larsen">Jeffrey S. Larsen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Curtis, Wayne R" sort="Curtis, Wayne R" uniqKey="Curtis W" first="Wayne R" last="Curtis">Wayne R. Curtis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22559055</idno>
<idno type="pmid">22559055</idno>
<idno type="doi">10.1186/1472-6750-12-21</idno>
<idno type="pmc">PMC3403893</idno>
<idno type="wicri:Area/Main/Corpus">000515</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000515</idno>
<idno type="wicri:Area/Main/Curation">000515</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000515</idno>
<idno type="wicri:Area/Main/Exploration">000515</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots.</title>
<author>
<name sortKey="Larsen, Jeffrey S" sort="Larsen, Jeffrey S" uniqKey="Larsen J" first="Jeffrey S" last="Larsen">Jeffrey S. Larsen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802</wicri:regionArea>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
<placeName>
<settlement type="city">University Park (Pennsylvanie)</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Curtis, Wayne R" sort="Curtis, Wayne R" uniqKey="Curtis W" first="Wayne R" last="Curtis">Wayne R. Curtis</name>
</author>
</analytic>
<series>
<title level="j">BMC biotechnology</title>
<idno type="eISSN">1472-6750</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Coculture Techniques (MeSH)</term>
<term>Comovirus (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Silencing (MeSH)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Genetic Vectors (genetics)</term>
<term>Genetic Vectors (metabolism)</term>
<term>Glucuronidase (genetics)</term>
<term>Glucuronidase (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (cytology)</term>
<term>Plant Roots (metabolism)</term>
<term>Potexvirus (genetics)</term>
<term>RNA, Viral (genetics)</term>
<term>Tobacco (cytology)</term>
<term>Tobacco (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral (génétique)</term>
<term>Agrobacterium (métabolisme)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Comovirus (génétique)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Glucuronidase (génétique)</term>
<term>Glucuronidase (métabolisme)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Potexvirus (génétique)</term>
<term>Racines de plante (cytologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Tabac (cytologie)</term>
<term>Tabac (métabolisme)</term>
<term>Techniques de coculture (MeSH)</term>
<term>Vecteurs génétiques (génétique)</term>
<term>Vecteurs génétiques (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucuronidase</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Racines de plante</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Roots</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Comovirus</term>
<term>Genetic Vectors</term>
<term>Potexvirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Comovirus</term>
<term>Glucuronidase</term>
<term>Potexvirus</term>
<term>Vecteurs génétiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Agrobacterium</term>
<term>Genetic Vectors</term>
<term>Glucuronidase</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Agrobacterium</term>
<term>Feuilles de plante</term>
<term>Glucuronidase</term>
<term>Racines de plante</term>
<term>Tabac</term>
<term>Vecteurs génétiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cells, Cultured</term>
<term>Coculture Techniques</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Silencing</term>
<term>Genes, Reporter</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Extinction de l'expression des gènes</term>
<term>Gènes rapporteurs</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Techniques de coculture</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plant cell suspensions and hairy root cultures represent scalable protein expression platforms. Low protein product titers have thus far limited the application of transient protein expression in these hosts. The objective of this work was to overcome this limitation by harnessing A. tumefaciens to deliver replicating and non-replicating RNA viral vectors in plant tissue co-cultures.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Replicating vectors derived from Potato virus X (PVX) and Tobacco rattle virus (TRV) were modified to contain the reporter gene β-glucuronidase (GUS) with a plant intron to prevent bacterial expression. In cell suspensions, a minimal PVX vector retaining only the viral RNA polymerase gene yielded 6.6-fold more GUS than an analogous full-length PVX vector. Transient co-expression of the minimal PVX vector with P19 of Tomato bushy stunt virus or HC-Pro of Tobacco etch virus to suppress post-transcriptional gene silencing increased GUS expression by 44 and 83%, respectively. A non-replicating vector containing a leader sequence from Cowpea mosaic virus (CPMV-HT) modified for enhanced translation led to 70% higher transient GUS expression than a control treatment. In hairy roots, a TRV vector capable of systemic movement increased GUS accumulation by 150-fold relative to the analogous PVX vector. Histochemical staining for GUS in TRV-infected hairy roots revealed the capacity for achieving even higher productivity per unit biomass.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>For the first time, replicating PVX vectors and a non-replicating CPMV-HT vector were successfully applied toward transient heterologous protein expression in cell suspensions. A replicating TRV vector achieved transient GUS expression levels in hairy roots more than an order of magnitude higher than the highest level previously reported with a viral vector delivered by A. tumefaciens.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22559055</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1472-6750</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2012</Year>
<Month>May</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>BMC biotechnology</Title>
<ISOAbbreviation>BMC Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots.</ArticleTitle>
<Pagination>
<MedlinePgn>21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1472-6750-12-21</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Plant cell suspensions and hairy root cultures represent scalable protein expression platforms. Low protein product titers have thus far limited the application of transient protein expression in these hosts. The objective of this work was to overcome this limitation by harnessing A. tumefaciens to deliver replicating and non-replicating RNA viral vectors in plant tissue co-cultures.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Replicating vectors derived from Potato virus X (PVX) and Tobacco rattle virus (TRV) were modified to contain the reporter gene β-glucuronidase (GUS) with a plant intron to prevent bacterial expression. In cell suspensions, a minimal PVX vector retaining only the viral RNA polymerase gene yielded 6.6-fold more GUS than an analogous full-length PVX vector. Transient co-expression of the minimal PVX vector with P19 of Tomato bushy stunt virus or HC-Pro of Tobacco etch virus to suppress post-transcriptional gene silencing increased GUS expression by 44 and 83%, respectively. A non-replicating vector containing a leader sequence from Cowpea mosaic virus (CPMV-HT) modified for enhanced translation led to 70% higher transient GUS expression than a control treatment. In hairy roots, a TRV vector capable of systemic movement increased GUS accumulation by 150-fold relative to the analogous PVX vector. Histochemical staining for GUS in TRV-infected hairy roots revealed the capacity for achieving even higher productivity per unit biomass.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">For the first time, replicating PVX vectors and a non-replicating CPMV-HT vector were successfully applied toward transient heterologous protein expression in cell suspensions. A replicating TRV vector achieved transient GUS expression levels in hairy roots more than an order of magnitude higher than the highest level previously reported with a viral vector delivered by A. tumefaciens.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Larsen</LastName>
<ForeName>Jeffrey S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Curtis</LastName>
<ForeName>Wayne R</ForeName>
<Initials>WR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Biotechnol</MedlineTA>
<NlmUniqueID>101088663</NlmUniqueID>
<ISSNLinking>1472-6750</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018920" MajorTopicYN="N">Coculture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017798" MajorTopicYN="N">Comovirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017863" MajorTopicYN="N">Potexvirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22559055</ArticleId>
<ArticleId IdType="pii">1472-6750-12-21</ArticleId>
<ArticleId IdType="doi">10.1186/1472-6750-12-21</ArticleId>
<ArticleId IdType="pmc">PMC3403893</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2006 Jun;151(6):1075-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16421635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Jan 12,;488(1-2):13-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Feb 15;96(3):570-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Jun;8(5):607-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2000 Apr;11(2):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 1999 Apr;10(2):151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10209145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Feb;63(3):393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17221361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2008 Mar;58(1):154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17980618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(11):e13976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21103044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Feb;8(2):142-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Nov 3;22(21):5690-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14592968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 May;30(4):415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12028572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Biosafety Res. 2005 Jan-Mar;4(1):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16209135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Aug;28(8):1273-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19529942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Sep 29;103(1):157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11051555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2010 Nov-Dec;26(6):1534-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20859930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 Jun;23(6):718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2008 Mar-Apr;24(2):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18335952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1992 Jul;2(4):549-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1344890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Apr;82(8):4064-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Jan;15(1):114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9933521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2004 Jun 1;102(1):97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15068885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1999 Nov;80 ( Pt 11):2799-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10580040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 May;9(5):1347-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2184028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1999 Oct;2(5):382-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2008 Jul 1;100(4):814-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18306425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2007 May-Jun;23(3):570-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17425328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1996 May 1;236(2):302-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2011 Sep 10;155(2):164-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Sep;7(7):682-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1212-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18775971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2006 Sep;24(9):426-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16843560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2004 May-Jun;20(3):890-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15176896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Jul 1;103(4):706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1968 Apr;50(1):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5650857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;483:275-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Feb;85(5):1339-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2003 Mar 1;4(2):125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Feb 15;96(3):608-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16983697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Nov;20(11):1396-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1232-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2009 Sep 10;143(3):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19616595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2007 Jan;1(1):19-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2010;10:88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21162736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry (Mosc). 2006 Aug;71(8):846-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16978146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):3999-4009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14701-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Oct 20;88(2):248-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15449296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Apr;42(6):819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Mar-Apr;30(2):434-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2006 Jan;131(1):10-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Feb 1;267(1):29-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Curtis, Wayne R" sort="Curtis, Wayne R" uniqKey="Curtis W" first="Wayne R" last="Curtis">Wayne R. Curtis</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Larsen, Jeffrey S" sort="Larsen, Jeffrey S" uniqKey="Larsen J" first="Jeffrey S" last="Larsen">Jeffrey S. Larsen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000514 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000514 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22559055
   |texte=   RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22559055" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024